Goodness-of-fit test for nonparametric regression models: Smoothing spline ANOVA models as example
نویسندگان
چکیده
Nonparametric regression models do not require the specification of the functional form between the outcome and the covariates. Despite their popularity, the amount of diagnostic statistics, in comparison to their parametric counterparts, is small. We propose a goodness-of-fit test for nonparametric regression models with linear smoother form. In particular, we apply this testing framework to smoothing spline ANOVA models. The test can consider two sources of lack-of-fit: whether covariates that are not currently in the model need to be included, and whether the current model fits the data well. The proposed method derives estimated residuals from the model. Then, statistical dependence is assessed between the estimated residuals and the covariates using the HSIC. If dependence exists, the model does not capture all the variability in the outcome associated with the covariates, otherwise the model fits the data well. The bootstrap is used to obtain p-values. Application of the method is demonstrated with a neonatal mental development data analysis. We demonstrate correct type I error as well as power performance through simulations.
منابع مشابه
Hypothesis testing in semiparametric additive mixed models.
We consider testing whether the nonparametric function in a semiparametric additive mixed model is a simple fixed degree polynomial, for example, a simple linear function. This test provides a goodness-of-fit test for checking parametric models against nonparametric models. It is based on the mixed-model representation of the smoothing spline estimator of the nonparametric function and the vari...
متن کاملA Class of Nonparametric Volatility Models: Applications to Financial Time Series
In this paper, we first examine several volatility models in the literature. We then estimate financial volatility using multivariate adaptive regression splines (MARS) by logarithmic transformation as a preliminary analysis to examine a nonparametric volatility model. Despite its popularity, MARS has never been applied to model financial volatility. To implement the MARS methodology in a time ...
متن کاملUse of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model
Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...
متن کاملComponent Selection and Smoothing in Multivariate Nonparametric Regression
We propose a new method for model selection and model fitting in multivariate nonparametric regression models, in the framework of smoothing spline ANOVA. The “COSSO” is a method of regularization with the penalty functional being the sum of component norms, instead of the squared norm employed in the traditional smoothing spline method. The COSSO provides a unified framework for several recent...
متن کاملVariable Selection in Bayesian Smoothing Spline ANOVA Models: Application to Deterministic Computer Codes
With many predictors, choosing an appropriate subset of the covariates is a crucial, and difficult, step in nonparametric regression. We propose a Bayesian nonparametric regression model for curve-fitting and variable selection. We use the smoothing spline ANOVA framework to decompose the regression function into interpretable main effect and interaction functions. Stochastic search variable se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 122 شماره
صفحات -
تاریخ انتشار 2018